Tailoring Cu Electrodes for Enhanced CO2 Electroreduction through Plasma Electrolysis in Non‐Conventional Phosphorus‐Oxoanion‐Based Electrolytes

Author:

Elnagar Mohamed M.1ORCID,Menezes Pramod V.1,Parada Walter A.2,Mattausch Yannick1,Kibler Ludwig A.1,Mayrhofer Karl J. J.2,Jacob Timo134ORCID

Affiliation:

1. Institute of Electrochemistry Ulm University 89069 Ulm Germany

2. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Egerlandstr. 3 91058 Erlangen Germany

3. Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage 89081 Ulm Germany

4. Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany

Abstract

AbstractThis study presents a green, ultra‐fast, and facile technique for the fabrication of micro/nano‐structured and porous Cu electrodes through in‐liquid plasma electrolysis using phosphorous‐oxoanion‐based electrolytes. Besides the preferential surface faceting, the Cu electrodes exhibit unique surface structures, including octahedral nanocrystals besides nanoporous and microporous structures, depending on the employed electrolyte. The incorporation of P‐atoms into the Cu surfaces is observed. The modified Cu electrodes display increased roughness, leading to higher current densities for CO2 electroreduction reaction. The selectivity of the modified Cu electrodes towards C2 products is highest for the Cu electrodes treated in Na2HPO3 and Na3PO4 electrolytes, whereas those treated in Na2H2PO2 produce the most H2. The Cu electrode treated in Na3PO4 produces ethylene (23 %) at −1.1 V vs. RHE, and a comparable amount of acetaldehyde (15 %) that is typically observed for Cu(110) single crystals. The enhanced selectivity is attributed to several factors, including the surface morphology, the incorporation of phosphorus into the Cu structure, and the formation of Cu(110) facets. Our results not only advance our understanding of the influence of the electrolyte's nature on the plasma electrolysis of Cu electrodes, but also underscores the potential of in‐liquid plasma treatment for developing efficient Cu electrocatalysts for sustainable CO2 conversion.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3