Graphite‐Based Composite Anodes with C−O−Nb Heterointerfaces Enable Fast Lithium Storage

Author:

Liu Wenhao12,Wang Xuanpeng234ORCID,Liu Jinshuai12,Guo Changyuan1,Qiao Fan1,Ding Xiaoling12,Liao Xiaobin1,Han Chunhua124

Affiliation:

1. School of Materials Science and Engineering, Hainan Institute Wuhan University of Technology Wuhan 430070 P. R. China

2. Hainan Institute Wuhan University of Technology Sanya 572000 P. R. China

3. Department of Physical Science & Technology, School of Science Wuhan University of Technology Wuhan 430070 P. R. China

4. Hubei Longzhong Laboratory Wuhan University of Technology (Xiangyang Demonstration Zone) Xiangyang 441000 P. R. China

Abstract

AbstractTo better satisfy the increasing demands for electric vehicles, it is crucial to develop fast‐charging lithium‐ion batteries (LIBs). However, the fast‐charging capability of commercial graphite anodes is limited by the sluggish Li+ insertion kinetics. Herein, we report a synergistic engineering of uniform nano‐sized T‐Nb2O5 particles on graphite (Gr@Nb2O5) with C−O−Nb heterointerfaces, which prevents the growth and aggregation of T‐Nb2O5 nanoparticles. Through detailed theoretical calculations and pair distribution function analysis, the stable existence of the heterointerfaces is proved, which can accelerate the electron/ion transport. These heterointerfaces endow Gr@Nb2O5 anodes with high ionic conductivity and excellent structural stability. Consequently, Gr@10‐Nb2O5 anode, where the mass ratio of T‐Nb2O5/graphite=10/100, exhibits excellent cyclic stability and incredible rate capabilities, with 100.5 mAh g−1 after 10000 stable cycles at an ultrahigh rate of 20 C. In addition, the synergistic Li+ storage mechanism is revealed by systematic electrochemical characterizations and in situ X‐ray diffraction. This work offers new insights to the reasonable design of fast‐charging graphite‐based anodes for the next generation of LIBs.

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3