Si Single‐Atom Sites Anchored Carbon Anode Achieving the Zero‐Strain Feature and Superior Li+ Storage Performance

Author:

Liu Jieqian1,Wang Fei12,Mao Jian1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University Chengdu 610065 China

2. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China

Abstract

AbstractOvercoming the significant volume strain in silicon‐based anodes has been the focus of research for decades. The strain/stress in silicon‐based anodes is inversely proportional to their size. In this study, we design atomic Si sites to achieve the ultimate size effect, which indeed exhibits a zero‐strain feature. Compared with conventional silicon‐based anodes with alloying addition reactions, the lithium‐ion storage mechanism of atomic Si sites is solid‐solution reactions, which brings about the zero‐strain feature. Additionally, the ligand structure of atomic Si sites remains constant during cycling. This zero‐strain feature results in excellent cycling stability. Furthermore, the exposed atomic Si sites enhance the electrochemical reaction kinetics, leading to outstanding rate performance. Moreover, the anode inherits the advantages of silicon‐based anodes, including a low working voltage (~0.21 V) and high specific capacity (~2300 mAh g−1 or ~1203 mAh cm−3). This work establishes a novel pathway for designing low/zero‐strain anodes.

Funder

Sichuan Provincial Youth Science and Technology Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3