Affiliation:
1. School of Materials Science and Engineering Anhui Polytechnic University Wuhu 241000 Anhui China
2. Department of Chemistry Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion Guangdong Technion-Israel Institute of Technology Shantou 515063 China
3. Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong SAR China
Abstract
AbstractSeawater electrolysis presents a viable route for sustainable large‐scale hydrogen production, yet its practical application is hindered by several technical challenges. These include the sluggish kinetics of hydrogen evolution, poor stability, cation deposition at the cathode, electrode corrosion, and competing chloride oxidation at the anode. To overcome these obstacles, the development of innovative electrocatalysts is crucial. Transition metal phosphides (TMPs) have emerged as promising candidates owing to their superior catalytic performance and tunable structural properties. This review provides a comprehensive analysis of recent progress in the structural engineering of TMPs tailored for efficient seawater electrolysis. We delve into the catalytic mechanisms underpinning hydrogen and oxygen evolution reactions in different pH conditions, along with the detrimental side reactions that impede hydrogen production efficiency. Several methods to prepare TMPs are then introduced. Additionally, detailed discussions on structural modifications and interface engineering tactics are presented, showcasing strategies to enhance the activity and durability of TMP electrocatalysts. By analyzing current research findings, our review aims to inform ongoing research endeavors and foster advancements in seawater electrolysis for practical and ecologically sound hydrogen generation.
Funder
Anhui Polytechnic University
Hong Kong Polytechnic University