Enhanced Activity and Selectivity for Nitrogen Reduction Reaction in Electrides‐Based Heterostructures: A DFT Computational Study

Author:

Wijesingha Hetti1,Wan Tsz Lok1ORCID,Liu Junxian1ORCID,Kou Liangzhi1ORCID

Affiliation:

1. School of Mechanical Medical and Process Engineering Queensland University of Technology Brisbane QLD Australia

Abstract

AbstractDeveloping sustainable and efficient catalysts for ammonia synthesis from atmospheric molecular N2 under ambient conditions presents a significant 21st‐century challenge. Two‐dimensional heterostructures, particularly single‐atom catalysts (SACs) supported on two‐dimensional materials, have emerged as a promising avenue due to their remarkable catalytic activity and selectivity. Electrides, characterized by an abundance of free electrons and high surface activity, have attracted substantial attention in this context. Through density functional theory (DFT) calculations, this study proposes electride‐graphene heterostructures (EGHS) as catalysts to effectively regulate charge distribution at the catalytic center, facilitating the optimization of catalytic performance. The EGHS model addresses challenges related to excessive adsorbate binding, mitigating electron transfer compared to electride monolayer adsorption. This novel approach utilizes heterogeneous heterostructures to finely tune the catalytic site, optimizing electron input for enhanced catalysis. Based on the optimized charge transfer for N2 activation, the Cr‐doped EGHS (Cr@EGHS) exhibits a promising performance in the nitrogen reduction reaction, leading to, a relatively low limiting potential of −0.85 V and high selectivity. The hypothesis charge transfer depend on N2 activation is further supported by modulating the distance between component layers of heterostructure. These findings contribute to design principles for 2D heterostructure catalysts and offer a reference for experimental synthesis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3