Unlocking High Capacity and Reversible Alkaline Iron Redox Using Silicate‐Sodium Hydroxide Hybrid Electrolytes

Author:

Jagadeesan Sathya Narayanan1,Guo Fenghua2,Pidathala Ranga Teja3,Abeykoon A. M. Milinda4,Kwon Gihan4,Olds Daniel4,Narayanan Badri3ORCID,Teng Xiaowei1ORCID

Affiliation:

1. Department of Chemical Engineering Worcester Polytechnic Institute 100 Institute Road Worcester MA 01609 United States

2. Department of Chemical Engineering University of New Hampshire 33 Academic Way Durham NH 03824 United States

3. Department of Mechanical Engineering University of Louisville 332 Eastern Pkwy Louisville Kentucky 40292 United States

4. National Synchrotron Light Source II Brookhaven National Laboratory 743 Brookhaven Avenue Upton New York 11973 United States

Abstract

AbstractAlkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4 on discharging and parasitic H2 on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4 conversions. Electrochemical experiments, operando X‐ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate‐induced strengthening of hydrogen‐bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de‐sorption on iron surfaces. This new silicate‐assisted redox chemistry mitigates H2 and Fe3O4 formation, improving storage capacity (199 mAh g−1 in half‐cells) and coulombic efficiency (94 % after 400 full‐cell cycles), paving a path to realizing green battery systems built from earth‐abundant materials.

Funder

National Energy Research Scientific Computing Center

Office of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3