Graphdiyne‐Induced CoN/CoS2 Heterojunction: Boosting Efficiency for Bifunctional Oxygen Electrochemistry in Zinc‐Air Batteries

Author:

Cui Min1,Yuan Yanan1,Wu Yue1,Che Zhongmei1,Li Peixuan1,Yang Xiaochen1,Chen Yuqi1,Hu Wei1,Wang Jingui1,Wang Shuai12,Guo Yingshu1,Wu Zexing3ORCID

Affiliation:

1. Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering Jinan 250353 Shandong P.R. China

2. Nankai University Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Tianjin 300071 P.R. China

3. Qingdao University of Science and Technology Key Laboratory of Eco-Chemical Engineering College of Chemistry and Molecular Engineering Qingdao 266042 Shandong P.R. China

Abstract

AbstractThe performance of zinc‐air battery is constrained by the sluggish rate of oxygen electrode reaction, particularly under high current discharge conditions where the kinetic process of the oxygen reduction reaction (ORR) decelerates significantly. To address this challenge, we present a novel phase transition strategy that facilitates the creation of a heteroatom‐doped heterointerface (CoN/CoS2). The meticulously engineered CoN/CoS2/NC electrocatalyst displays a superior ORR half‐wave potential of 0.87 V and an OER overpotential of 320 mV at 10 mA cm−2. Experimental and computational analysis confirm that the CoN/CoS2 heterostructure optimizes local charge distribution, accelerates electron transfer, and tunes active sites for enhanced catalysis. Notably, this heterojunction improves stability by resisting corrosion and degradation under harsh alkaline conditions, thus demonstrating superior performance and longevity in a custom‐made liquid zinc‐air battery. This research provides valuable practical and theoretical foundations for designing efficient heterointerfaces in electrocatalysis applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3