Tuning the Interfaces of ZnO/ZnCr2O4 Derived from Layered‐Double‐Hydroxide Precursors to Advance Nitrogen Photofixation

Author:

Gao Junyu12,Wu Fan12,Zhao Yunxuan13,Bian Xuanang12,Zhou Chao1,Tang Junwang45,Zhang Tierui12ORCID

Affiliation:

1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. College of Science Hebei University of Science and Technology Shijiazhuang 050018 P. R. China

4. Department of Chemical Engineering University College London Torrington Place London WC1E 7JE United Kingdom

5. Industrial Catalysis Center, Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractDrawing inspiration from the enzyme nitrogenase in nature, researchers are increasingly delving into semiconductor photocatalytic nitrogen fixation due to its similar surface catalytic processes. Herein, we reported a facile and efficient approach to achieving the regulation of ZnO/ZnCr2O4 photocatalysts with ZnCr‐layered double hydroxide (ZnCr‐LDH) as precursors. By optimizing the composition ratio of Zn/Cr in ZnCr‐LDH to tune interfaces, we can achieve an enhanced nitrogen photofixation performance (an ammonia evolution rate of 31.7 μmol g−1 h−1 using pure water as a proton source) under ambient conditions. Further, photo‐electrochemical measurements and transient surface photovoltage spectroscopy revealed that the enhanced photocatalytic activity can be ascribed to the effective carrier separation efficiency, originating from the abundant composite interfaces. This work further demonstrated a promising and viable strategy for the synthesis of nanocomposite photocatalysts for nitrogen photofixation and other challenging photocatalytic reactions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3