Biodiesel as a Sustainable Platform Chemical Enabled by Selective Partial Hydrogenation: Compounds Outplace Combustion?!

Author:

Roth Thomas F. H.1ORCID,Kühl Alexander1ORCID,Spiekermann Maximilian L.1ORCID,Wegener Hannes W.1ORCID,Seidensticker Thomas1ORCID

Affiliation:

1. Department for Biochemical and Chemical Engineering, Laboratory for Industrial Chemistry TU Dortmund University Emil-Figge-Str. 66 44265 Dortmund Germany

Abstract

AbstractThe hydrogenation of polyunsaturated fatty acids (PUFAs) in vegetable oils and their derivatives is essential for their use in many areas, such as biofuels and food chemistry. However, no attempts have been made to adapt this technology to the requirements of further chemical utilization of fatty acid methyl esters as molecular building blocks, especially for particularly promising double‐bond reactions. In this work, we, therefore, use three homogeneous catalytic model reactions (hydroformylation, isomerizing methoxycarbonylation, and ethenolysis) to show, firstly, that it is already known from the literature that high PUFA contents have a negative impact on activity and selectivity. Subsequently, using the example of soybean and canola biodiesel, we demonstrate that these key figures can be drastically improved by a preceding selective partial hydrogenation. This makes it possible to first reduce the share of PUFAs to <1 w % without causing significant overhydrogenation and then to carry out hydroformylation, methoxycarbonylation, and ethenolysis with significantly increased activity (up to twentyfold) and selectivity (up to 80 % increase). With these findings, we hope to convince the scientific and industrial world of the potential of selective partial hydrogenation as a key technology for utilizing renewable raw materials and to encourage its effective use in future work.

Funder

Fachagentur Nachwachsende Rohstoffe

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3