Hexavalent Ions Insertion in Garnet Li7La3Zr2O12 Toward a Low Temperature Densification Reaction

Author:

Campanella Daniele12,Zhu Wen1,Girard Gabriel1,Savoie Sylvio1,Kaboli Shirin1,Feng Zimin1,Guerfi Abdelbast1,Romio Martina3,Molaiyan Palanivel3,Bélanger Daniel2,Paolella Andrea34ORCID

Affiliation:

1. Centre d'Excellence en Électrification des Transports et Stockage d'Energie (CEETSE) Hydro-Québec, Varennes Québec J3X 1S1 Canada

2. Département de Chimie Université du Québec à Montréal (UQAM) 2101 Rue Jeanne-Mance, Montréal Québec H3C 3P8 Canada

3. Austrian Institute of Technology (AIT) Battery Tecnologies Giefinggasse 2 1210 Wien Austria

4. Department of Inorganic Chemistry-Functional Materials University of Vienna Währinger Straße 42 1090 Vienna Austria

Abstract

AbstractNowadays, solid electrolytes are considered the main alternative to conventional liquid electrolytes in lithium batteries. The fabrication of these materials is however limited by the strict synthesis conditions, requiring high temperatures which can negatively impact the final performances. Here, it is shown that a modification of garnet‐based Li7La3Zr2O12 (LLZO) and the incorporation of tellurium can accelerate the synthesis process by lowering the formation temperature of cubic LLZO at temperatures below 700 °C. Optimized synthesis at 750 °C showed a decrease in particle size and cell parameter for samples with higher amounts of Te and the evaluation of electrochemical performances reported for LLZO Te0.25 a value of ionic conductivity of 5,15×10−5 S cm−1 after hot‐pressing at 700 °C, two orders of magnitude higher than commercial Al‐LLZO undergoing the same working conditions, and the highest value at this densification temperature. Partial segregation of Te‐rich phases occurs for high‐temperature densification. Our study shows the advantages of Te insertion on the sintering process of LLZO garnet and demonstrates the achievement of highly conductive LLZO with a low‐temperature treatment.

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3