Tailoring Chemical Absorption‐Precipitation to Lower the Regeneration Energy of a CO2 Capture Solvent

Author:

Jang Gyoung Gug1ORCID,Jung Gang Seob2,Seo Jiho3,Keum Jong K.4,Yoon Mina5,Damron Josh T.3,Naskar Amit K.3,Custelcean Radu3,Kasturi Abishek6,Yiacoumi Sotira6,Tsouris Costas16

Affiliation:

1. Manufacturing Science Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

2. Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

3. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

4. Center for Nanophase Materials Science and Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

5. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

6. School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta GA 30332 USA

Abstract

AbstractSolvent‐based CO2 capture consumes significant amounts of energy for solvent regeneration. To improve energy efficiency, this study investigates CO2 fixation in a solid form through solvation, followed by ionic self‐assembly‐aided precipitation. Based on the hypothesis that CO32− ions may bind with monovalent metal ions, we introduced Na+ into an aqueous hexane‐1,6‐diamine solution where CO2 forms carbamate and bicarbonate. Then, Na+ ions in the solvent act as a seed for ionic self‐assembly with diamine carbamate to form an intermediate ionic complex. The recurring chemical reactions lead to the formation of an ionic solid from a mixture of organic carbamate/carbonate and inorganic sodium bicarbonate (NaHCO3), which can be easily removed from the aqueous solvent through sedimentation or centrifugation and heated to release the captured CO2. Mild‐temperature heating of the solids at 80–150 °C causes decomposition of the solid CO2‐diamine‐Na molecular aggregates and discharge of CO2. This sorbent regeneration process requires 6.5–8.6 GJ/t CO2. It was also found that the organic carbamate/carbonate solid, without NaHCO3, contains a significant amount of CO2, up to 6.2 mmol CO2/g‐sorbent, requiring as low as 2.9–5.8 GJ/t CO2. Molecular dynamic simulations support the hypothesis of using Na+ to form relatively less stable, yet sufficiently solid, complexes for the least energy‐intensive recovery of diamine solvents compared to bivalent carbonate–forming ions.

Funder

UT-Battelle

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3