Deep Eutectic Solvents as Suitable Solvents for Lipase‐Catalyzed Transesterification Reactions

Author:

Noro Jennifer123ORCID,Cabo Joana12,Freitas David S.12,Roque Catarina S.12,de Castro Mariana12,Cavaco‐Paulo Artur123,Silva Carla12

Affiliation:

1. Centre of Biological Engineering University of Minho Campus of Gualtar 4710-057 Braga Portugal

2. LABBELS – Associate Laboratory University of Minho 4710-057 Braga, Guimarães Portugal

3. Solfarcos – Pharmaceutical and Cosmetic Solutions 4710-053 Braga Portugal

Abstract

AbstractIn this work, three deep eutectic mixtures (DES 1: choline chloride/urea; DES 2: choline chloride/glycerol; and DES 3: tetrabutylammonium bromide/imidazole) were investigated as mediums for the synthesis of glucose laurate and glucose acetate. Aiming to achieve a greener and more sustainable approach, the synthesis reactions were catalyzed by lipases from Aspergillus oryzae (LAO), Candida rugosa (LCR), and porcine pancreas (LPP). The hydrolytic activity of lipases against p‐nitrophenyl hexanoate revealed no evidence of enzyme inactivation when DES were used as medium. Regarding the transesterification reactions, combining LAO or LCR with DES 3 resulted in the efficient production of glucose laurate (from glucose and vinyl laurate) (conversion >60 %). The best result for LPP was observed in DES 2, with 98 % of product production after 24 hours of reaction. When replacing vinyl laurate by a smaller hydrophilic substrate, vinyl acetate, a distinct behavior was observed. LCR and LPP performed better in DES 1, yielding more than 80 % of glucose acetate after 48 hours of reaction. The catalytic activity of LAO was less pronounced, reaching only nearly 40 % of product in DES 3. The results highlight the potential of combining biocatalysis with greener and environmentally‐safer solvents, for the synthesis of differentiated chain‐length sugar fatty acid esters (SFAE).

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3