A Dynamic Water Channel Affects O2 Stability in [FeFe]‐Hydrogenases

Author:

Brocks Claudia1ORCID,Das Chandan K.2,Duan Jifu1,Yadav Shanika3,Apfel Ulf‐Peter3,Ghosh Subhasri1,Hofmann Eckhard4,Winkler Martin5,Engelbrecht Vera1,Schäfer Lars V.2,Happe Thomas1ORCID

Affiliation:

1. Faculty of Biology and Biotechnology Photobiotechnology Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany

2. Faculty of Chemistry and Biochemistry Center for Theoretical Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany

3. Faculty of Chemistry and Biochemistry Inorganic Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany

4. Faculty of Biology and Biotechnology X-ray structure analysis of proteins Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany

5. Electrobiotechnology TUM Campus Straubing Schulgasse 22 Straubing 94315 Germany

Abstract

Abstract[FeFe]‐hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2) induces the degradation of their catalytic cofactor, the H‐cluster, which consists of a cubane [4Fe4S] subcluster (4FeH) and a unique diiron moiety (2FeH). Previous attempts to prevent O2‐induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH. In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH) surrounding the H‐cluster. As this hydrophilic path may be accessible for O2 molecules we applied site‐directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high‐resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH. These results reveal new strategies for improving the O2 stability of [FeFe]‐hydrogenases by focusing on the O2 diffusion network near the active site.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3