Scalable Superhydrophilic Solar Evaporators for Long‐Term Stable Desalination, Fresh Water Collection and Salt Collection by Vertical Salt Deposition

Author:

Huang Xiaopeng1,Li Lingxiao12,Chen Kai1,Zhang Junping12ORCID

Affiliation:

1. Center of Eco-material and Green Chemistry Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractSolar‐driven interfacial evaporation (SIE) is very promising to solve the issue of fresh water shortage, however, poor salt resistance severely hinders long‐term stable SIE and fresh water collection. Here, we report design of superhydrophilic solar evaporators for long‐term stable desalination, fresh water collection and salt collection by vertical salt deposition. The evaporators are prepared by sequentially deposition of silicone nanofilaments, polypyrrole and Au nanoparticles on a polyester fabric composed of microfibers. The evaporators feature excellent photothermal effect and ultrafast water transport, due to their unique micro‐/nanostructure and superhydrophilicity. As a result, during SIE the salt gradually deposits vertically rather than occupies larger area on the evaporators. Consequently, long‐term stable SIE with high evaporation rates of 2.4–2.1 kg m−2 h−1 for 3.5–20 wt % brine in continuous 10 h is achieved under 1 sun illumination. Meanwhile, the loosely deposited salt can be easily collected, realizing zero brine discharge. Moreover, scalable preparation of the evaporator is achieved, which exhibits efficient collection of high quality fresh water (10.08 kg m−2 in 8 h) via SIE desalination under weak natural sunlight (0.46~0.66 sun). This strategy sheds a new light on the design of high‐performance solar evaporators and their real‐world fresh water collection.

Funder

National Natural Science Foundation of China

West Light Foundation, Chinese Academy of Sciences

Natural Science Foundation of Gansu Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3