Top‐Down Thickness Reduction Synthesis of Biomass‐Derived Carbon Nanosheets with Hierarchical Pore Structure for High‐Performance Supercapacitors

Author:

Yuan Gaozhi1,Wei Xing1,Zhang Qing12ORCID

Affiliation:

1. Institutes of Physical Science and Information Technology Anhui University Hefei 230601 Anhui China

2. Anhui Graphene Engineering Research Center Anhui University Hefei 230601 Anhui China

Abstract

AbstractCarbon electrode materials with superior rate performance are highly demanded in application scenarios of high power output/input, especially when paired with organic electrolyte for extended voltage window and high energy storage. By extracting thin sheets of entangled cellulose fibers from cell wall structures, porous carbon nanosheets as templated from the cellulose sheets are synthesized. Evident thickness reduction effect has been demonstrated with thickness reduced from several micrometers to several nanometers of the obtained thickness‐reduced activated carbon nanosheets (TRAC), which endow the material with a large surface area and high pore volume. The obtained TRAC exhibits significantly enhanced ion diffusion kinetics and superior rate capability thanks to the shortened diffusion pathway and suitable pore size distribution. Effects of sonication time have also been investigated, showing a trade‐off between ion diffusion kinetics and pseudocapacitive contribution. This thickness‐reduction method is extendable to many other biomass sources as cellulose sheets are widely existed in nature, offering a practical and easy‐to‐implement strategy of fabricating porous carbon nanostructures for efficient energy storage and utilization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3