Efficient One‐Pot Synthesis of 2,5‐Furandicarboxylic Acid from Sugars over Polyoxometalate/Metal‐Organic Framework Catalysts

Author:

Zeng Di12,Wang Wenjing2,Zhang Yu12,Wang Juxue12,Cui Bingkun12,Jia Taikang12,Li Ruofan12,Chu Hongxiang23,Zhang Ling12,Wang Wenzhong123ORCID

Affiliation:

1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 P. R. China

3. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China

Abstract

AbstractConverting extensive sugars into value‐added 2,5‐furandicarboxylic acid (FDCA) has been considered to be a promising approach to developing sustainable substitutes for chemicals from fossil resources. The complicated conversion processes involved multiple cascade reactions and intermediates, which made the design of efficient multifunction catalysts challenging. Herein, we developed a catalyst by introducing phosphotungstic acid (PW) and Co sites into the UiO‐66, which achieved a one‐pot cascade conversion of fructose‐to‐FDCA with high conversion (>99 %) and yield (94.6 %) based on the controllable Lewis/Brønsted acid sites and redox sites. Controlled experiments and detailed characterizations show that the multifunctional PW/UiO(Zr, Co) catalysts successfully affords the direct synthesis of FDCA from fructose via dehydration and selective oxidation in the one‐pot reaction. Additionally, the MOF catalysts could also efficiently convert various sugars into FDCA, which has broad application prospects. This study provides new strategies for designing multifunctional catalysts to achieve efficient production of FDCA from biomass in the one‐pot reaction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3