Making Persistent Plastics Degradable

Author:

Farkas Vajk123,Nagyházi Márton2,Anastas Paul T.1,Klankermayer Jürgen4,Tuba Róbert125ORCID

Affiliation:

1. Yale Center for Green Chemistry and Engineering Yale University New Haven Connecticut 06511 USA

2. Institute of Materials and Environmental Chemistry Eötvös Loránd Research Network Research Centre for Natural Sciences P.O. Box 286. Budapest Hungary

3. Department of Organic Chemistry and Technology Budapest University of Technology and Economics Szent Gellért tér 4. 1111 Budapest Hungary

4. Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 252074 Aachen Germany

5. Faculty of Engineering Research Centre of Biochemical Environmental and Chemical Engineering MOL Department of Hydrocarbon & Coal Processing University of Pannonia Egyetem u. 10 H-8200 Veszprém Hungary

Abstract

AbstractThe vastness of the scale of the plastic waste problem will require a variety of strategies and technologies to move toward sustainable and circular materials. One of these strategies to address the challenge of persistent fossil‐based plastics is new catalytic processes that are being developed to convert recalcitrant waste such as polyethylene to produce propylene, which can be an important precursor of high‐performance polymers that can be designed to biodegrade or to degrade on demand. Remarkably, this process also enables the production of biodegradable polymers using renewable raw materials. In this Perspective, current catalyst systems and strategies that enable the catalytic degradation of polyethylene to propylene are presented. In addition, concepts for using “green” propylene as a raw material to produce compostable polymers is also discussed.

Funder

National Research, Development and Innovation Office

Publisher

Wiley

Subject

General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry

Reference110 articles.

1. S. P. Pollution S. D. Attenborough D. E. Mac “https://ellenmacarthurfoundation.org/topics/plastics/overview ”2022.

2. M. M. K. Paul T. Anastas Paul H. Bickart Designing Safer Polymers John Wiley And Sons Inc. 2000.

3. Biodegradable High‐Density Polyethylene‐like Material

4. Sustainable Design of Structural and Functional Polymers for a Circular Economy

5. R. K. Peter Eisele inUllmann's Encyclopedia of Industrial Chemistry Wiley-VCH Verlag GmbH & Co. KGaA Weinheim 2012 p. 281.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3