A Binary Ionogel Electrolyte for the Realization of an All Solid‐State Electrical Double‐Layer Capacitor Performing at Low Temperature

Author:

Pameté Emmanuel1,Wang Zhuanpei1,Béguin François1

Affiliation:

1. Institute of Chemistry and Technical Electrochemistry Poznan University of Technology Berdychowo 4 60-965 Poznan Poland

Abstract

AbstractOver the last years, solid‐state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double‐layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel‐based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture‐free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate – [EMIm][BF4]0.5[FSI]0.5 – into a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) network. The further called “binary ionogel” films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm−1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=−16 °C and −7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at −101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below −20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 μm thick binary ionogel separator and electrodes made from a hierarchical micro‐/mesoporous MgO‐templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from −40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg−1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid‐state energy storage devices operating at subambient temperatures in extreme environments.

Funder

Narodowe Centrum Nauki

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3