Origin of the Activity of Electrochemical Ozone Production Over Rutile PbO2 Surfaces

Author:

Jiang Jin‐Tao1,Guo Zhongyuan12,Deng Shao‐Kang1,Jia Xue2,Liu Heng2,Xu Jiang1,Li Hao2ORCID,Cheng Li‐Hua13

Affiliation:

1. College of Environmental & Resource Sciences Zhejiang University Hangzhou 310058 PR China

2. Advanced Institute for Materials Research (WPI-AIMR) Tohoku University Sendai 980-8577 Japan

3. MOE Engineering Research Center of Membrane & Water Treatment Technology Zhejiang University Hangzhou 310058 PR China

Abstract

AbstractOzonation water treatment technology has attracted increasing attention due to its environmental benign and high efficiency. Rutile PbO2 is a promising anode material for electrochemical ozone production (EOP). However, the reaction mechanism underlying ozone production catalyzed by PbO2 was rarely studied and not well‐understood, which was in part due to the overlook of the electrochemistry‐driven formation of oxygen vacancy (OV) of PbO2. Herein, we unrevealed the origin of the EOP activity of PbO2 starting from the electrochemical surface state analysis using density functional theory (DFT) calculations, activity analysis, and catalytic volcano modeling. Interestingly, we found that under experimental EOP potential (i. e., a potential around 2.2 V vs. reversible hydrogen electrode), OV can still be generated easily on PbO2 surfaces. Our subsequent kinetic and thermodynamic analyses show that these OV sites on PbO2 surfaces are highly active for the EOP reaction through an interesting atomic oxygen (O*)‐O2 coupled mechanism. In particular, rutile PbO2(101) with the “in‐situ” generated OV exhibited superior EOP activities, outperforming the (111) and (110) surfaces. Finally, by catalytic volcano modeling, we found that PbO2 is close to the theoretical optimum of the reaction, suggesting a superior EOP performance of rutile PbO2. All these analyses are in good agreement with previous experimental observations in terms of EOP overpotentials. This study provides the first volcano model to explain why rutile PbO2 is among the best metal oxide materials for EOP and provides new design guidelines for this rarely studied but industrially promising reaction.

Funder

Hirose Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3