Study on the impact of low‐temperature stress on winter wheat based on multi‐model coupling

Author:

Chen Jiameng12ORCID,Zhang Peiyan12,Liu Junming12,Deng Jingyuan12,Su Wei12,Wang Pengxin23,Li Ying45

Affiliation:

1. College of Land Science and Technology China Agricultural University Beijing China

2. Key Laboratory of Agricultural Disaster Remote Sensing, Ministry of Agriculture Beijing China

3. College of Information and Electrical Engineering China Agricultural University Beijing China

4. Henan Institute of Meteorological Sciences Zhengzhou China

5. CMA·Henan Agrometeorological Support and Applied Technique Key Laboratory Zhengzhou China

Abstract

AbstractCrop growth models, such as the WOrld FOod STudies (WOFOST) model, mimic the mechanistic processes involved in crop development, growth, and yield production. The accuracy of simulation is decreased in unfavorable low‐temperature settings because these models do not accurately represent crop response processes in low‐temperature stress. Enhancing the WOFOST crop growth model's accuracy in simulating crops' responses to cold temperatures is the aim of this work. Given its vulnerability to low temperatures, the inquiry uses winter wheat in Henan Province as a focal point. It integrates the WHEATGROW wheat phenology model with the Frost model of Lethal Temperature 50 (FROSTOL) inside the framework of the crop growth model. This link aims to improve simulation accuracy and supplement the model's mechanisms, particularly when it comes to the impact of low temperatures on crop development. The study uses Long Short‐Term Memory networks to build a yield model that integrates remote sensing data with information from simulated crop models. Under low temperatures, the leaf area index, total above ground biomass, and total weight of storage organs of the model WWF—which combines FROSTOL and WHEATGROW with WOFOST—show a considerable decline. It was discovered that there is a greater improvement in simulation accuracy of the linked model WWF relative to the WOFOST model in frost years than in normal years, based on a comparison analysis between typical frost years and normal years. To be more precise, the improvement is 8.03% in frost years and 1.98% in regular years. When all is said and done, the coupled model advances our knowledge of how winter wheat is impacted by low temperatures.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3