Research on the reaction mechanism of 2,4,6‐trinitrotoluene resource utilization I: Formation of 2,4,6‐trinitrobenzoic acid in acetic acid with N,N′,N″‐trihydroxyisocyanuric acid catalyst

Author:

Zhang Guan1ORCID,Li Jin1,Liu Zongkuan1

Affiliation:

1. Technology Innovation Center for Land Engineering and Human Settlements, School of Human Settlement and Civil Engineering Xi'an Jiaotong University Xi'an Shaanxi China

Abstract

AbstractAs an organic molecule catalyst, N,N′,N″‐trihydroxyisocyanuric acid can selectively catalyze the oxidation of the methyl group of waste 2,4,6‐trinitrotoluene to generate 2,4,6‐trinitrobenzoic acid. This reaction can avoid environmental pollution by inorganic heavy metal catalysts. In this study, four reaction stages of this catalytic reaction were designed and validated computationally at the M06‐2X‐D3ZERO/6‐311G(d,p) level using the acetic acid solvent model. These validations include transition state searches, intrinsic reaction coordinate calculations, reactant and product optimizations, and frequency calculations. The final reaction network of 23 transition states shows that after N,N′,N″‐trihydroxyisocyanuric acid activation and common reaction, the network bifurcates into two stages: alcohol to carboxylic acid and aldehyde to carboxylic acid. Although the former stage releases about 155 kcal/mol of Gibbs free energy, less than the 177 kcal/mol from the latter stage, the overall reaction equation shows that the pathway including former stage does not consume the catalytically active substance IM_T2, which saves the energy required for reactivation and is thus more favorable. Furthermore, the key transition states in the reaction network include bimolecular substitution reactions and proton‐hopping transfer reactions. Analyses of their interaction region indicators and intrinsic reaction coordinate results demonstrate strong selectivity. Additionally, the energy barriers and heat releases of the latter are twice and 1.3 times greater than those of the former, respectively. In summary, this study elucidated two competitive reaction pathways and identified the more energetically favorable and selective pathway, and it provides useful insights for further optimization of industrial utilization of 2,4,6‐trinitrotoluene.

Funder

Shaanxi Provincial Land Engineering Construction Group

Shaanxi Provincial Key Laboratory of Craniofacial Precision Medicine Research, Xi'an Jiaotong University

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3