The “Collections as ML Data” checklist for machine learning and cultural heritage

Author:

Lee Benjamin Charles Germain1ORCID

Affiliation:

1. Paul G. Allen School for Computer Science & Engineering University of Washington Seattle Washington USA

Abstract

AbstractWithin cultural heritage, there has been a growing and concerted effort to consider a critical sociotechnical lens when applying machine learning techniques to digital collections. Though the cultural heritage community has collectively developed an emerging body of work detailing responsible operations for machine learning in galleries, museums, archives, and libraries at the organizational level, there remains a paucity of guidelines created for researchers embarking on machine learning projects with digital collections. The manifold stakes and sensitivities involved in applying machine learning to cultural heritage underscore the importance of developing such guidelines. This article contributes to this need by formulating a detailed checklist with guiding questions and practices that can be employed while developing a machine learning project that utilizes cultural heritage data. I call the resulting checklist the “Collections as ML Data” checklist, which, when completed, can be published with the deliverables of the project. By surveying existing projects, including my own project, Newspaper Navigator, I justify the “Collections as ML Data” checklist and demonstrate how the formulated guiding questions can be employed by researchers.

Funder

National Science Foundation

Publisher

Wiley

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Past Meets Future: Human-AI Interaction for Digital History and Cultural Heritage;Companion Proceedings of the 29th International Conference on Intelligent User Interfaces;2024-03-18

2. Value co‐creation in cultural heritage information practices: Literature review and future agenda;Journal of the Association for Information Science and Technology;2023-12-26

3. Evaluating the Blackbox;Edition Museum;2023-12-04

4. Digital Curation and AI;Edition Museum;2023-12-04

5. An approach to assess the quality of Jupyter projects published by GLAM institutions;Journal of the Association for Information Science and Technology;2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3