A novel intrarenal multimodal 2D/3D registration algorithm and preliminary phantom study

Author:

Fu Zuoming1ORCID,Jin Ziyi1,Zhang Chongan1,Wang Peng2,Zhang Hong1,Ye Xuesong1

Affiliation:

1. Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science Zhejiang University Hangzhou China

2. Hangzhou Xianao Technology Co., Ltd Hangzhou China

Abstract

AbstractRetrograde intrarenal surgery (RIRS) is a widely utilized diagnostic and therapeutic tool for multiple upper urinary tract pathologies. The image‐guided navigation system can assist the surgeon to perform precise surgery by providing the relative position between the lesion and the instrument after the intraoperative image is registered with the preoperative model. However, due to the structural complexity and diversity of multi‐branched organs such as kidneys, bronchi, etc., the consistency of the intensity distribution of virtual and real images will be challenged, which makes the classical pure intensity registration method prone to bias and random results in a wide search domain. In this paper, we propose a structural feature similarity‐based method combined with a semantic style transfer network, which significantly improves the registration accuracy when the initial state deviation is obvious. Furthermore, multi‐view constraints are introduced to compensate for the collapse of spatial depth information and improve the robustness of the algorithm. Experimental studies were conducted on two models generated from patient data to evaluate the performance of the method and competing algorithms. The proposed method obtains mean target error (mTRE) of 0.971 ± 0.585 mm and 1.266 ± 0.416 mm respectively, with better accuracy and robustness overall. Experimental results demonstrate that the proposed method has the potential to be applied to RIRS and extended to other organs with similar structures.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3