Interdecadal change in the influence of the southern annular mode to the tropical cyclone frequency over the Bay of Bengal

Author:

Mbigi Dickson123ORCID,Xiao Ziniu1ORCID

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics, Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Department of Physics University of Dar es Salaam Dar es Salaam Tanzania

Abstract

AbstractThe current study investigates the modulation of the tropical cyclone (TC) frequency (TCF) over the Bay of Bengal (BoB) by the southern annular mode (SAM). The analysis reveals that the SAM–TCF relationship during October–November–December has undergone interdecadal changes from significant during 1971–1994 to insignificant during 1995–2021. This contrasting influence of the SAM on the TCF occurrence is also echoed in the large‐scale environmental variables conducive to forming tropical cyclones (TCs). Based on the possible mechanism, we found that the SAM can imprint tripole sea surface temperature (SST) patterns in the southern Indian Ocean via altering surface wind speed from 1971 to 1994. The SAM‐related tripole SST pattern induces the surface‐level anticyclone anomaly, which enhances the south easterlies towards the western equatorial Indian Ocean. Such intensified anomalous wind crosses the equator and diverts towards the east to form the cyclone anomaly in the BoB. Meanwhile, at 200 hPa, the anomalous anticyclone over western Australia induces divergent wind flows over the study region. Consequently, the ascending motion in BoB promotes the tropical cyclone generation. During 1995–2021, however, the SAM is associated with the dipole SST pattern in the southern Indian Ocean. Correspondingly, the SAM‐related dipole SST yields anomalous atmospheric circulations confined to the Southern Hemisphere and eventually fails to impact the formation of TCs in the northern Indian Ocean, where the study region is located. The findings of this research can be useful in advancing our knowledge of the interannual variability of TCs activity in the BoB based on the remote climate signal.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3