Senescence‐based colorectal cancer subtyping reveals distinct molecular characteristics and therapeutic strategies

Author:

Lv Min‐Yi123,Cai Du123,Li Cheng‐Hang123,Chen Junguo123,Li Guanman123,Hu Chuling123,Gai Baowen123,Lei Jiaxin123,Lan Ping123,Wu Xiaojian123,He Xiaosheng123,Gao Feng123

Affiliation:

1. Department of Genaral Surgery (Colorectal Surgery) The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China

2. Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou China

3. Biomedical Innovation Center The Sixth Affiliated Hospital,Sun Yat‐sen University Guangzhou China

Abstract

AbstractCellular senescence has been listed as a hallmark of cancer, but its role in colorectal cancer (CRC) remains unclear. We comprehensively evaluated the transcriptome, genome, digital pathology, and clinical data from multiple datasets of CRC patients and proposed a novel senescence subtype for CRC. Multi‐omics data was used to analyze the biological features, tumor microenvironment, and mutation landscape of senescence subtypes, as well as drug sensitivity and immunotherapy response. The senescence score was constructed to better quantify senescence in each patient for clinical use. Unsupervised learning revealed three transcriptome‐based senescence subtypes. Cluster 1, characterized by low senescence and activated proliferative pathways, was sensitive to chemotherapeutic drugs. Cluster 2, characterized by intermediate senescence and high immune infiltration, exhibited significant immunotherapeutic advantages. Cluster 3, characterized by high senescence, high immune, and stroma infiltration, had a worse prognosis and maybe benefit from targeted therapy. We further constructed a senescence scoring system based on seven senescent genes through machine learning. Lower senescence scores were highly predictive of longer disease‐free survival, and patients with low senescence scores may benefit from immunotherapy. We proposed the senescence subtypes of CRC and our findings provide potential treatment interventions for each CRC senescence subtype to promote precision treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Biochemistry (medical),Genetics (clinical),Computer Science Applications,Drug Discovery,Genetics,Oncology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3