Biomimetic Synthesis and Mechanism of Hydroxyapatite Crystals by Biotemplate of Small Intestinal Submucosa and Bacterial Cellulose

Author:

Zhu Qiuhong1ORCID,Jiao Hua12,Zhao Kang12,Gou Xingchun3,Tang Yufei12,Ji Jingwen1

Affiliation:

1. School of Materials Science and Engineering Xi'an University of Technology Xi'an 710048 China

2. Shaanxi Province Key Laboratory of Corrosion and Protection Xi'an University of Technology Xi'an 710048 P. R. China

3. Institute of Basic Medical Sciences and Shaanxi Key Laboratory of Brain Disorders Xi'an Medical University Xi’ an 710021 China

Abstract

AbstractHydroxyapatite (HAp) is coassembled with many organic molecular templates led by collagens in natural bone. In this study, it is presumed that small intestinal submucosa (SIS) with acetamide group chelates calcium ion and bacterial cellulose (BC) has strong intermolecular hydroxyl group and powerful attraction for calcium ion to initiate initial nucleation. Phosphate ions bind calcium ions to form seed crystal of calcium phosphate, which is further directionally grown under the mediation of the template structure and finally forms weakly crystalline HAp, providing an environment for the HAp formation. Besides, the samples are characterized by X‐ray diffraction, Fourier transform infrared, X‐ray photoelectron spectroscopy, scanning electron microscope, and transmission electron microscope to unveil the phase structure, composition, and morphology, and a growth mechanism is proposed. HAp is successfully synthesized on SIS–BC biomineralization template. The results show morphology of samples from sheet‐lamellar‐like to flower‐like or porous‐spheroid‐like from 1 day to 7 days. The plate‐like HAp rods are polycrystal with c‐axis orientation. Interestingly, the HAp/SIS‐BC composites have the least relative mass of HAp on mineralization and the content of HAp (57%) is very close to the human bone tissue in structure (about 60%). Finally, the HAp mineralized films show good biocompatibility through MC3T3‐E1cells test for the potential biomaterials.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Shaanxi Provincial Key Laboratory

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3