Preparation of In0.5Sn0.5Se Crystal via a Zone Melting Method and Evaluation of its Thermoelectric Properties

Author:

Lin Siqi12,Lu Xinyu1,Wang Hanming1,Bai Xudong3,Liu Xuechao4,Jin Min12ORCID

Affiliation:

1. College of Materials Shanghai Dianji University Shanghai 201306 China

2. Key Laboratory of Polar Materials and Devices Ministry of Education East China Normal University Shanghai 200062 China

3. Wuzhen Laboratory Tongxiang 314500 China

4. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

Abstract

AbstractIndium selenides (InSe) is a promising layer‐structured semiconductor with broad potential applications in photovoltaics, diodes, and optic devices, but its thermoelectric performance is limited by the high thermal conductivity. In this work, by alloying high‐performance thermoelectric SnSe in InSe, the In0.5Sn0.5Se crystal is prepared via a zone melting method. The density of In0.5Sn0.5Se crystal is measured as 5.81 g cm−3 which is between the density of pure SnSe and InSe. The XRD measurements indicate that the grown In0.5Sn0.5Se crystal consists of InSe and SnSe crystals with a preferred orientation along (00l) and (h00) planes, respectively. SEM and EDS analysis reveal that eutectic InSe and SnSe phases interdigitate with each other. The thermogravimetry analysis shows a slow decrease at a temperature ≈700 °C. In0.5Sn0.5Se crystal displays a n‐type conduct behavior, the electrical conductivity σ is ≈0.02 Scm−1 at room temperature and increases to 8.4 Scm−1 under 820 K. The highest power factor PF is estimated to be ≈0.36 µWcmK−2 near 570 K. The InSe‐SnSe phase boundaries lead the thermal conductivity of In0.5Sn0.5Se crystal to be as low as 0.29 Wm−1K−1. Due to the low lattice thermal conductivity, In0.5Sn0.5Se crystal shows a ZT value of 0.04 at 600 K in this work.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Program of Shanghai Academic Research Leader

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3