Exploring mc‐Silicon Wafers: Utilizing Machine Learning to Enhance Wafer Quality Through Etching Studies

Author:

Raji Madhesh1,Balakrishnapillai Suseela Sreeja2,Manikkam Srinivasan1,Anbazhagan Gowthami3,Kutsukake Kentaro45,Thamotharan Keerthivasan1,Rajavel Ramadoss3,Usami Noritaka6,Perumalsamy Ramasamy1

Affiliation:

1. Department of Physics Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India

2. Department of Electronics and Communication Engineering CEG Anna University Chennai Tamil Nadu 600025 India

3. Department of ECE Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India

4. Institute of Materials and Systems for Sustainability (IMaSS) Nagoya University Furo‐Cho, Chikusa‐Ku Nagoya 464‐8603 Japan

5. Center for Advanced Intelligence Project RIKEN, Nihonbashi Chuo‐ku Tokyo 103‐0027 Japan

6. Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan

Abstract

AbstractThis paper provides a method for improving the photovoltaic conversion efficiency and optical attributes of silicon solar cells manufactured from as‐cut boron doped p‐type multi‐crystalline silicon wafers using acid‐based chemical texturization via machine learning. A decreased reflectance, which can be attained by the right chemical etching conditions, is one of the key elements for raising solar cell efficiency. In this work, the mc‐Silicon wafer surface reflectance is obtained under (<2%) after optimization of wet chemical etching. The HF + HNO3 + CH3COOH chemical etchant is used in the ratio 1:3:2 at different conditions of the etching duration of 1 min, 2 min, 3 min, and 4 min, respectively. The as‐cut boron doped p‐type mc‐silicon wafers are analysed with ultraviolet–visible spectroscopy, optical microscopy, Fourier transforms infrared spectroscopy, thickness profilometer, and scanning electron microscopy before and after etching. The chemical etching solution produces good results in 3 min etched wafer, with a reflectivity value of <2%.The reflectivity and optical images are inputs to the convolutional neural network model and the linear regression model to obtain the etching rate for better reflectivity. The classification model provides 99.6% accuracy and the regression model results in the minimum mean squared error (MSE) of 0.062.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3