Acoustic Shock‐Induced Low Dielectric Loss in Glycine and Oxalic Acid‐Based Single Crystals

Author:

Muniraj Deepa1,Kumar Raju Suresh2,Almansour Abdulrahman I.2,Kim Ikhyun3ORCID,Dhas S. A. Martin Britto13

Affiliation:

1. Shock Wave Research Laboratory Department of Physics Sacred Heart College Tirupattur Tamilnadu 635601 India

2. Department of Chemistry College of Science King Saud University Riyadh 11451 Saudi Arabia

3. Department of Mechanical Engineering Keimyung University Daegu 42601 Republic of Korea

Abstract

AbstractGlycinium oxalate (GO) and Bis(glycinium) oxalate (BGO) crystals are successfully grown using the slow evaporation solution growth technique. Following their growth, the crystals are subjected to a series of acoustic shock pulses. The effects of these shock pulses on the structural, optical, dielectric, and morphological properties of the crystals are comprehensively analyzed using various characterization techniques, including powder X‐ray diffraction (XRD), UV‐Visible spectroscopy, dielectric spectroscopy, and optical microscopy. Structural analysis through XRD reveals shifts in diffraction peak positions, indicating structural deformations. Fourier transform infrared spectroscopy analysis assesses the chemical stability of GO and BGO under shocked conditions. UV‐Visible spectroscopy shows alterations in optical transmission with successive shock pulses, attributed to structural and surface defects. Dielectric properties are investigated over a frequency range from 1 Hz to 1 MHz, revealing variations in dielectric constant and loss tangent, which provide insights into the electrical behavior of the materials under normal and shocked conditions. Optical and scanning electron microscopy examine surface morphology, visualizing defects induced by the shock pulses. This study highlights the significant impact of shock pulses on the structural properties, optical transmission, dielectric properties, and surface morphology of GO and BGO crystals, offering valuable information on their resilience under dynamic conditions and potential applications.

Funder

National Research Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3