Hydrologic and water quality modelling of bioretention columns in cold regions

Author:

Yu Yang1,Li Zhuowen1,Yu Tong1,Guo Shuai2,Zhou Yongchao3ORCID,Li Xiaochen4,Zhang Wenming1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Alberta Edmonton Alberta Canada

2. Department of Municipal Engineering Hefei University of Technology Hefei China

3. The Institute of Municipal Engineering Zhejiang University Hangzhou China

4. College of Water Conservancy and Civil Engineering Shandong Agricultural University Tai'an China

Abstract

AbstractBioretention is widely used in urban sustainable stormwater management; however, limited numerical research has been conducted on its performance in cold regions, particularly for winter snowmelt, spring runoff and summer large storms (>50 mm) for urban flood mitigation. In this study, HYDRUS 1D was used to explore these knowledge gaps. The model was comprehensively calibrated and validated against 2‐year hydrologic and water quality data of four bioretention columns with different designs under lab‐simulated cold region conditions. The Morris method was used to measure the sensitivity and interaction of the calibrated hydraulic parameters. The model revealed that the effective hydraulic conductivity (KS) values of the soil media were similar for winter snowmelt and spring runoff when the soil temperature was around −0.5°C. Preferential flow is likely to occur in soil media during winter or spring in cold regions. The summer modelling showed that bioretention could substantially reduce peak flow, ponding depth and duration for large storm events (even for a 1:100 local storm with 83.4 mm in 4 h). The water quality modelling confirmed experimental results that the bioretention effectively removed phosphate and ammonium but had leaching issues for chloride and nitrate. Finally, optimization and recommendations for bioretention columns were provided.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Alberta

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3