Water desalination using stainless steel meshes coated with layered double hydroxide/graphene oxide nanocomposite

Author:

Foroutan Fahimeh1,Ahmadzadeh Hossein1ORCID,Davardoostmanesh Maryam1,Amiri Amirhassan1

Affiliation:

1. Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran

Abstract

AbstractCoated stainless steel meshes with layered double hydroxides and graphene oxide nanocomposites (LDH/GO) were used as desalination membranes. The nature of stainless steel mesh allows a greater amount of sorbent to be coated on the surface using sol–gel technique and increases the adsorption capacity of ions and the efficiency of desalination. These substrates improve the contact surface area so that approximately 5 min is required for the desalination process. The LDH/GO stainless steel mesh exhibited excellent corrosion resistance and tensile strength of 99.9% and 112 MPa, respectively. To achieve the best desalination efficiency, different parameters were optimized, including the ratio of GO to LDH in the nanocomposites, the number of mesh layers, NaCl concentrations, and process cycles. The maximum adsorption capacity for the NaCl was 555.5 mg g−1. The results revealed that LDH/GO nanocomposite was able to remove (94.3 ± 0.5) % of the NaCl under the optimum conditions. The proposed method was used to successfully remove Na+, Mg+2, Ca+2, and K+ cations from seawater, with the yields of 92.3%, 92.5%, 91.2%, and 90.2%, respectively.Practitioner Points The salts are removed via interaction between salt ions and functional groups on the LDH/GO nanocomposite surface. A high amount of adsorbent loaded on the surface of steel mesh leads to an improvement in the adsorption capacity. The sol‐gel technique strengthens the LDH/GO nanocomposites on the surface of steel mesh.

Funder

Ferdowsi University of Mashhad

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3