Hybrid passivity‐based control of a three single‐phase star‐connected unidirectional five‐level rectifier with a space vector pulse‐width modulation algorithm for voltage balance

Author:

Cheng Hong1,Yang Daokuan1ORCID,Wang Cong1,Wang Ning1,Tian Changgeng1

Affiliation:

1. School of Mechanical and Electrical Engineering China University of Mining and Technology‐Beijing Beijing China

Abstract

SummaryThe unidirectional multilevel rectifier has been used in numerous industrial applications due to its reduced active power switches, higher power density, and lower cost compared to conventional bidirectional converters. Recently, the unidirectional five‐level rectifier has been proposed for its lower device stress and the potential for extension to higher levels. However, it adopts a conventional linear proportional integral (PI) control strategy and sinusoidal pulse‐width modulation (SPWM) method, resulting in a complex control structure, particularly for the balance control of the midpoint voltage, and suboptimal dynamic performance. To address this issue and enhance system's large‐scale stability, a hybrid passivity‐based control (PBC) strategy, along with a simplified mathematical model, has been proposed. The hybrid PBC control strategy includes an outer loop active disturbance rejection (ADR)‐PI controller and inner loop PBC controller, providing a simple overall control structure and strong anti‐interference ability. Additionally, a space vector pulse‐width modulation (SVPWM) algorithm has been briefly introduced and applied to further improve the recovery and balance speed of the DC‐side capacitor voltages. Simulation and experiment results have validated the feasibility and effectiveness of the proposed hybrid PBC strategy and the SVPWM algorithm.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3