Validating hidden Markov models for seabird behavioural inference

Author:

Akeresola Rebecca A.12ORCID,Butler Adam2,Jones Esther L.2,King Ruth1,Elvira Víctor1,Black Julie3,Robertson Gail2

Affiliation:

1. School of Mathematics and Maxwell Institute for Mathematical Sciences University of Edinburgh Edinburgh UK

2. Biomathematics & Statistics Scotland Edinburgh UK

3. Joint Nature Conservation Committee Aberdeen UK

Abstract

AbstractUnderstanding animal movement and behaviour can aid spatial planning and inform conservation management. However, it is difficult to directly observe behaviours in remote and hostile terrain such as the marine environment. Different underlying states can be identified from telemetry data using hidden Markov models (HMMs). The inferred states are subsequently associated with different behaviours, using ecological knowledge of the species. However, the inferred behaviours are not typically validated due to difficulty obtaining ‘ground truth’ behavioural information. We investigate the accuracy of inferred behaviours by considering a unique data set provided by Joint Nature Conservation Committee. The data consist of simultaneous proxy movement tracks of the boat (defined as visual tracks as birds are followed by eye) and seabird behaviour obtained by observers on the boat. We demonstrate that visual tracking data is suitable for our study. Accuracy of HMMs ranging from 71% to 87% during chick‐rearing and 54% to 70% during incubation was generally insensitive to model choice, even when AIC values varied substantially across different models. Finally, we show that for foraging, a state of primary interest for conservation purposes, identified missed foraging bouts lasted for only a few seconds. We conclude that HMMs fitted to tracking data have the potential to accurately identify important conservation‐relevant behaviours, demonstrated by a comparison in which visual tracking data provide a ‘gold standard’ of manually classified behaviours to validate against. Confidence in using HMMs for behavioural inference should increase as a result of these findings, but future work is needed to assess the generalisability of the results, and we recommend that, wherever feasible, validation data be collected alongside GPS tracking data to validate model performance. This work has important implications for animal conservation, where the size and location of protected areas are often informed by behaviours identified using HMMs fitted to movement data.

Funder

University of Edinburgh

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3