Invasive freshwater snails are less sensitive to population density than native conspecifics

Author:

Lewis Najev Briante Shevon1ORCID,Neiman Maurine12ORCID

Affiliation:

1. Department of Biology University of Iowa Iowa City Iowa USA

2. Department of Gender, Women's and Sexuality Studies University of Iowa Iowa City Iowa USA

Abstract

AbstractUnderstanding how and why some species or lineages become invasive is critically important for effectively predicting and mitigating biological invasions. Here, we address an important unanswered question in invasion biology: do key life‐history traits of invasive versus native lineages within a species differ in response to key environmental stressors? We focus on the environmental factor of population density, which is a fundamental characteristic of all populations, and investigate how changes in density affect native versus invasive Potamopyrgus antipodarum (New Zealand mudsnail). P. antipodarum has invaded 39 countries and detrimentally affects invaded environments. Previous studies of native and invasive populations and from laboratory experiments have demonstrated that growth and reproduction of P. antipodarum is sensitive to population density, though whether and how this sensitivity varies across native versus invasive lineages remains uncharacterized. We quantified individual growth rate and reproduction in P. antipodarum from multiple distinct native and invasive lineages across three different population density treatments. The growth of native but not invasive lineages decreased as density increased. There was no differential effect of density treatment on embryo production of invasive versus native snails, but a significantly higher proportion of snails were reproductive in high density compared to intermediate density for invasive lineages. In native lineages, there were no significant differences in the relative frequency of reproductive snails across density treatments. While the extent to which these results from our laboratory study can be extrapolated to the more complex natural world remain unclear, our findings are consistent with a scenario where differential sensitivity to population density could help explain why some lineages become successful invaders. Our findings also align with previous studies that show that invasive P. antipodarum lineages exhibit a relatively wide range of tolerance to environmental stressors.

Funder

Roy J. Carver Charitable Trust

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3