The role of climatic variables on nest evolution in tanagers

Author:

Colombo Silvia1ORCID,Newman Kevin D.2ORCID,Langmore Naomi E.3ORCID,Taylor Claire J.1ORCID,Medina Iliana1ORCID

Affiliation:

1. School of Biosciences University of Melbourne Parkville, Melbourne Victoria Australia

2. School of Agriculture, Food and Ecosystem Sciences University of Melbourne Parkville, Melbourne Victoria Australia

3. Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia

Abstract

AbstractAvian nests are fundamental structures in avian reproduction and face strong selective forces. Climatic conditions are likely to have shaped the evolution of specific nest traits, but evidence is scarce at a macroevolutionary level. The Thraupidae family (commonly known as tanagers) is an ideal clade to understand the link between nest architecture and climate because it presents wide variation in nest traits. To understand whether climatic variables have played a role in the diversification of nest traits among species in this family, we measured nests from 49 species using museum collections. We observed that dome‐nesting species are present in dryer and hotter environments, in line with previous findings suggesting that domed nests are a specialisation for arid conditions. We also found evidence that nests with thicker walls are present in locations with lower precipitation and that solar radiation can influence the shape of domed nests; birds tend to build shorter and narrower domes in areas with high levels of solar radiation. Open nest architecture is also potentially influenced by wind speed, with longer and deeper nests in areas characterised by strong winds. Our results support the hypothesis that different climatic variables can drive the evolution of specific aspects of nest architecture and contribute to the diversity of nest shapes we currently observe. However, climatic variables account only for a small fraction of the observed structural variation, leaving a significant portion still unexplained.

Publisher

Wiley

Reference83 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3