An IoT Intrusion Detection Approach Based on Salp Swarm and Artificial Neural Network

Author:

Alzubi Omar A.1ORCID,Alzubi Jafar A.2ORCID,Qiqieh Issa2,Al‐Zoubi Ala' M.3

Affiliation:

1. Faculty of Artificial Intelligence Al‐Balqa Applied University Salt Jordan

2. Faculty of Engineering Al‐Balqa Applied University Salt Jordan

3. Faculty of Information Technology Applied Science Private University Amman Jordan

Abstract

ABSTRACTThe Internet of Things has emerged as a significant and influential technology in modern times. IoT presents solutions to reduce the need for human intervention and emphasizes task automation. According to a Cisco report, there were over 14.7 billion IoT devices in 2023. However, as the number of devices and users utilizing this technology grows, so does the potential for security breaches and intrusions. For instance, insecure IoT devices, such as smart home appliances or industrial sensors, can be vulnerable to hacking attempts. Hackers might exploit these vulnerabilities to gain unauthorized access to sensitive data or even control the devices remotely. To address and prevent this issue, this work proposes integrating intrusion detection systems (IDSs) with an artificial neural network (ANN) and a salp swarm algorithm (SSA) to enhance intrusion detection in an IoT environment. The SSA functions as an optimization algorithm that selects optimal networks for the multilayer perceptron (MLP). The proposed approach has been evaluated using three novel benchmarks: Edge‐IIoTset, WUSTL‐IIOT‐2021, and IoTID20. Additionally, various experiments have been conducted to assess the effectiveness of the proposed approach. Additionally, a comparison is made between the proposed approach and several approaches from the literature, particularly SVM combined with various metaheuristic algorithms. Then, identify the most crucial features for each dataset to improve detection performance. The SSA‐MLP outperforms the other algorithms with 88.241%, 93.610%, and 97.698% for Edge‐IIoTset, IoTID20, and WUSTL, respectively.

Funder

Al-Balqa' Applied University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3