Fully automatic system to detect and segment the proximal femur in pelvic radiographic images for Legg–Calvé–Perthes disease

Author:

Ditmer Sofie1,Dwenger Nicole1,Jensen Louise N.1,Kim Harry2ORCID,Boel Rikke V.3,Ghaffari Arash3ORCID,Rahbek Ole3

Affiliation:

1. School of Communication and Culture University of Aarhus Aarhus Denmark

2. Scottish Rite for Children Dallas Texas USA

3. Department of Interdisciplinary Orthopedics Aalborg University Hospital Aalborg Denmark

Abstract

AbstractThis study aimed to develop a method using computer vision techniques to accurately detect and delineate the proximal femur in radiographs of Legg–Calvé–Perthes disease (LCPD) patients. Currently, evaluating femoral head deformity, a crucial predictor of LCPD outcomes, relies on unreliable categorical and qualitative classifications. To address this limitation, we employed the pretrained object detection model YOLOv5 to detect the proximal femur on over 2000 radiographs, including images of shoulders and chests, to enhance robustness and generalizability. Subsequently, we utilized the U‐Net convolutional neural network architecture for image segmentation of the proximal femur in more than 800 manually annotated images of stage IV LCPD. The results demonstrate outstanding performance, with the object detection model achieving high accuracy (mean average precision of 0.99) and the segmentation model attaining an accuracy score of 91%, dice coefficient of 0.75, and binary IoU score of 0.85 on the held‐out test set. The proposed fully automatic proximal femur detection and segmentation system offers a promising approach to accurately detect and delineate the proximal femoral bone contour in radiographic images, which is essential for further image analysis in LCPD patients. Clinical significance: This study highlights the potential of computer vision techniques for enhancing the reliability of Legg–Calvé–Perthes disease staging and outcome prediction.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3