Adenosine Triphosphate Prevents Serum Deprivation-Induced Apoptosis in Human Mesenchymal Stem Cells via Activation of the MAPK Signaling Pathways

Author:

Berlier Jessica L.1,Rigutto Sabrina1,Dalla Valle Antoine1,Lechanteur Jessica1,Soyfoo Muhammad S.12,Gangji Valerie12,Rasschaert Joanne1

Affiliation:

1. Laboratory of Bone and Metabolic Biochemistry Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium

2. Department of Rheumatology and Physical Medicine Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium

Abstract

Abstract Human mesenchymal stem cells (hMSC) are multipotent cells derived from various sources including adipose and placental tissues as well as bone marrow. Owing to their regenerative and immunomodulatory properties, their use as a potential therapeutic tool is being extensively tested. However, one of the major hurdles in using cell-based therapy is the use of fetal bovine serum that can trigger immune responses, viral and prion diseases. The development of a culture medium devoid of serum while preserving cell viability is therefore a major challenge. In this study, we demonstrated that adenosine triphosphate (ATP) restrained serum deprivation-induced cell death in hMSC by preventing caspases 3/7 activation and modulating ERK1/2 and p38 MAPK signaling pathways. We also showed that serum deprivation conditions triggered dephosphorylation of the proapoptotic protein Bad leading to cell death. Adjunction of ATP restored the phosphorylation state of Bad. Furthermore, ATP significantly modulated the expression of proapoptopic and antiapoptotic genes, in favor of an antiapoptotic profile expression. Finally, we established that hMSC released a high amount of ATP in the extracellular medium when cultured in a serum-free medium. Collectively, our results demonstrate that ATP favors hMSC viability in serum deprivation conditions. Moreover, they shed light on the cardinal role of the MAPK pathways, ERK1/2 and p38 MAPK, in promoting hMSC survival. Stem Cells  2015;33:211–218

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3