An Intelligent and Trust‐Enabled Farming Systems With Blockchain and Digital Twins on Mobile Edge Computing

Author:

Rathee Geetanjali1,Saini Hemraj2,Chakkravarthy Selvaraj Praveen3,Maheswar Rajagopal4ORCID

Affiliation:

1. Department of CSE Netaji Subhas University of Technology New Delhi India

2. School of Computing DIT University Dehradun India

3. Department of BME Dr. N.G.P. Institute of Technology Coimbatore Tamil Nadu India

4. Department of ECE, Centre for IoT and AI (CITI) KPR Institute of Engineering and Technology Coimbatore Tamil Nadu India

Abstract

ABSTRACTAdvancement and flourishment in mobile edge computing (MEC) have motivated the farmers to deploy an efficient ecosystem in their farms. For further real‐time monitoring and surveillance of the environment along with the deployment of intelligent farming, digital twin is considered as one of the emerging and most promising technologies. For proper optimization and utilization of physical systems, the physical components of the ecosystems are connected with the digital space. Further, the smart technologies and devices have convinced to address the expected level of requirements for accessing the rapid growth in farming associated with digital twins. However, with a large number of smart devices, huge amount of generated information from heterogeneous devices may increase the privacy and security concern by challenging the interrupting operations and management of services in smart farming. In addition, the growing risks associated with MEC by modifying the sensor readings and quality of service further affect the overall growth of intelligent farming. In order to resolve these challenges, this paper has proposed a secure surveillance architecture to detect deviations by incorporating digital twins in the ecosystem. Further, for real‐time monitoring and preprocessing of information, we have integrated a four‐dimensional trust mechanism along with blockchain. The four‐dimensional trusted method recognizes the behavior of each communicating device during the transmission of information in the network. Further, blockchain strengthens the surveillance process of each device behavior by continuously monitoring their activities. The proposed mechanism is tested and verified against various abnormalities received from sensors by simulating false use cases in the ecosystem and compared against various security metrics over existing approaches. Furthermore, the proposed mechanism is validated against several security threats such as control command threat, coordinated cyber threats, accuracy, and decision‐making and prediction of records over existing methods.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3