Ordered layered manganese‐based metal–organic frameworks induce 2D growth of discharge products via LiO2 adsorbent for high performance lithium–oxygen batteries

Author:

Yu Shuming1,Zhao Hao1,Wang Yuxin1,Lang Xiaoshi1ORCID,Wang Tan2,Qu Tingting3,Li Lan1,Yao Chuangang1,Cai Kedi1

Affiliation:

1. Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering Bohai University Jinzhou Liaoning China

2. Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China

3. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang China

Abstract

Adjusting the morphology and structure of the catalyst to optimize the structure of the discharge product is an effective strategy for improving the electrocatalytic activity of lithium–oxygen batteries (LOBs). In this paper, a novel high‐orientation layered manganese‐based metal–organic frameworks (Mn‐MOFs) catalyst for the air cathode of a LOB is synthesized via a facile solvothermal method using 2,4‐pyridine dicarboxylic acid combined with the metal Mn2+ ion. The presence of layered structure increases the specific surface area of the catalytic material, and the interlayer spacing can be used as a channel for electron and oxygen transport, thus promoting ion diffusion and catalyzing reactions. Otherwise, the coordination of the N element and metal ion in the organic ligand significantly improves the electrical conductivity and oxygen reduction reaction/oxygen extraction reaction (ORR/OER) performance of LOB. The effective combination of Mn2+ and 2,4‐pyridine dicarboxylic acid improves the overall catalytic capacity of the material, leading to a high LiO2 adsorption capacity so as to induce the formation of film discharge products and extend the cycle life of LOBs. When using Mn‐MOFs at 140°C as the cathode catalyst, the specific discharge capacity of the LOB can achieve 5579 mAh/g with a 0.2 mA/cm2 current density and maintain 140 stable cycles, limiting the specific discharge capacity to 500 mAh/g.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3