Comparison of electrode position marking procedures on the cranial surface

Author:

Fabregat‐Sanjuan Albert12ORCID,Pàmies‐Vilà Rosa32,Rigo‐Vidal Agnès2,Pascual‐Rubio Vicenç2

Affiliation:

1. FUNCMAT, Mechanical Engineering Department Universitat Rovira i Virgili Tarragona Spain

2. NeuroÈpia, Clinical Neurophysiology Department Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus Tarragona Spain

3. BIOMEC, Mechanical Engineering Department Universitat Politècnica de Catalunya Barcelona Spain

Abstract

AbstractIntroductionThe study aimed to compare the conventional method of electrode marking with a new system, EPlacement, to improve accuracy and reduce the time burden on health care professionals.MethodsTen health care professionals marked mannequin heads and adult volunteers using both methods. Time, accuracy, and usability of each method were analyzed. Three neurophysiological diagnostic tests were performed on mannequin heads: reversal pattern visual evoked potential (three electrodes required); somatosensory evoked potentials from the upper and lower extremities (five electrodes required); and standard intraoperative neurophysiological monitoring for spine surgery (nine electrodes required). Precision scanning of the mannequins with structured light and a printed hull were used to determine the actual locations of the electrodes of the 10/20 system.ResultsThe new method based on the EPlacement device represents an improvement on conventional tape measure (TM) marking and may be considered within the group of advanced methods such as navigation systems since it leads to improvements of 34% (1.7 mm) for electrode positions in the Nasion‐Inion and Left tragus–Right tragus lines and 77% (12.5 mm) for electrode positions using the approximate method. It reduces the time spent per test by an average of 1 min compared to the TM method. Health care staff survey results show a positive feedback regarding usability of the new method.ConclusionsThe study showed that the EPlacement device improves accuracy, reduces time, and is easy to use compared to the conventional method of electrode marking. The EPlacement method can facilitate the complex task of electrode marking and ultimately contribute to improved patient outcomes. It has the potential to be widely accepted and implemented in clinical practice.

Funder

Universitat Rovira i Virgili

European Observation Network for Territorial Development and Cohesion

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3