Improved control effect of pathological oscillations by using delayed feedback stimulation in neural mass model with pedunculopontine nucleus

Author:

Liu Yingpeng1,Zhu Rui1,Zhou Ye1,Lü Jiali1,Chai Yuan1ORCID

Affiliation:

1. School of Mathematics and Physics Shanghai University of Electric Power Shanghai China

Abstract

AbstractBackgroundThe role of delayed feedback stimulation in the discussion of Parkinson's disease (PD) has recently received increasing attention. Stimulation of pedunculopontine nucleus (PPN) is an emerging treatment for PD. However, the effect of PPN in regulating PD is ignored, and the delayed feedback stimulation algorithm is facing some problems in parameter selection.MethodsOn the basis of a neural mass model, we established a new network for PPN. Four types of delayed feedback stimulation schemes were designed, such as stimulating subthalamic nucleus (STN) with the local field potentials (LFPs) of STN nucleus, globus pallidus (GPe) with the LFPs of Gpe nucleus, PPN with the LFPs of Gpe nucleus, and STN with the LFPs of PPN nucleus.ResultsIn this study, we found that all four kinds of delayed feedback schemes are effective, suggesting that the algorithm is simple and more effective in experiments. More specifically, the other three control schemes improved the control performance and reduced the stimulation energy expenditure compared with traditional stimulating STN itself only.ConclusionPPN stimulation can affect the new network and help to suppress pathological oscillations for each neuron. We hope that our results can gain an insight into the future clinical treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Behavioral Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3