Affiliation:
1. School of Mathematics and Physics Shanghai University of Electric Power Shanghai China
Abstract
AbstractBackgroundThe role of delayed feedback stimulation in the discussion of Parkinson's disease (PD) has recently received increasing attention. Stimulation of pedunculopontine nucleus (PPN) is an emerging treatment for PD. However, the effect of PPN in regulating PD is ignored, and the delayed feedback stimulation algorithm is facing some problems in parameter selection.MethodsOn the basis of a neural mass model, we established a new network for PPN. Four types of delayed feedback stimulation schemes were designed, such as stimulating subthalamic nucleus (STN) with the local field potentials (LFPs) of STN nucleus, globus pallidus (GPe) with the LFPs of Gpe nucleus, PPN with the LFPs of Gpe nucleus, and STN with the LFPs of PPN nucleus.ResultsIn this study, we found that all four kinds of delayed feedback schemes are effective, suggesting that the algorithm is simple and more effective in experiments. More specifically, the other three control schemes improved the control performance and reduced the stimulation energy expenditure compared with traditional stimulating STN itself only.ConclusionPPN stimulation can affect the new network and help to suppress pathological oscillations for each neuron. We hope that our results can gain an insight into the future clinical treatment.
Funder
National Natural Science Foundation of China