A new authentication scheme for dynamic charging system of electric vehicles in fog environment

Author:

Huang Zhongming1ORCID,Wang Feng12,Chang Chin‐Chen3ORCID,Chen Xiuqiang1

Affiliation:

1. College of Computer Science and Mathematics, Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou China

2. Fujian Provincial Key Laboratory of Network Security and Cryptology Fujian Normal University Fuzhou China

3. Department of Information Engineering and Computer Science Feng Chia University Taichung Taiwan

Abstract

AbstractThe dynamic charging system of electric vehicles has great potential for development. Electric vehicles initiate charging requests, and charging stations charge authorized electric vehicles. Fog computing improves the efficiency of request processing. However, open channels can be vulnerable to various attacks by a malicious adversary. Mutual authentication schemes allow users and charging stations to confirm each other. Therefore, numerous authentication and key agreement schemes have been proposed. In 2021, Babu et al. proposed an authentication scheme based on fog servers. Unfortunately, we found that their scheme can not resist FS impersonation attack and replay attack. Hence, we propose an authentication scheme between electric vehicles and fog servers to resolve the security weakness. Our scheme uses lightweight hash functions and XOR operations, which is more suitable for resource‐constrained electric vehicles. We proved our scheme can achieve mutual authentication by using BAN logic, and analyzed that our scheme can resist impersonation, replay, and known session key attacks, ensuring anonymity and untraceability. We finally compare computation cost and communication cost of our scheme with the existing schemes. The result shows that our scheme performs better than others overall. Therefore, our scheme is secure and suitable for dynamic charging systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3