Mathematical modeling of evolution of cell networks in epithelial tissues

Author:

Krasnyakov Ivan1

Affiliation:

1. Department of Applied Physics Perm National Research Polytechnic University Perm Russia

Abstract

AbstractEpithelial cell networks imply a packing geometry characterized by various cell shapes and distributions in terms of number of cell neighbors and areas. Despite such simple characteristics describing cell sheets, the formation of bubble‐like cells during the morphogenesis of epithelial tissues remains poorly understood. This study proposes a topological mathematical model of morphogenesis in a squamous epithelial. We introduce a new potential that takes into account not only the elasticity of cell perimeter and area but also the elasticity of their internal angles. Additionally, we incorporate an integral equation for chemical signaling, allowing us to consider chemo‐mechanical cell interactions. In addition to the listed factors, the model takes into account essential processes in real epithelial, such as cell proliferation and intercalation. The presented mathematical model has yielded novel insights into the packing of epithelial sheets. It has been found that there are two main states: one consists of cells of the same size, and the other consists of “bubble” cells. An example is provided of the possibility of accounting for chemo‐mechanical interactions in a multicellular environment. The introduction of a parameter determining the flexibility of cell shapes enables the modeling of more complex cell behaviors, such as considering change of cell phenotype. The developed mathematical model of morphogenesis of squamous epithelium allows progress in understanding the processes of formation of cell networks. The results obtained from mathematical modeling are of significant importance for understanding the mechanisms of morphogenesis and development of epithelial tissues. Additionally, the obtained results can be applied in developing methods to influence morphogenetic processes in medical applications.

Funder

Russian Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3