A Bayesian approach for two‐stage multivariate Mendelian randomization with mixed outcomes

Author:

Deng Yangqing1ORCID,Tu Dongsheng2ORCID,O'Callaghan Chris J2,Jonker Derek J3,Karapetis Christos S4,Shapiro Jeremy5,Liu Geoffrey678,Xu Wei18

Affiliation:

1. Department of Biostatistics, Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada

2. Canadian Cancer Trials Group Queen's University Kingston Ontario Canada

3. Ottawa Hospital Research Institute University of Ottawa Ontario Canada

4. Flinders Medical Centre and Flinders University Adelaide South Australia Australia

5. Cabrini Hospital and Monash University Melbourne Victoria Australia

6. Temerty Faculty of Medicine University of Toronto Toronto Ontario Canada

7. Medical Oncology and Hematology Princess Margaret Cancer Centre Toronto Ontario Canada

8. Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada

Abstract

Many research studies have investigated the relationship between baseline factors or exposures, such as patient demographic and disease characteristics, and study outcomes such as toxicities or quality of life, but results from most of these studies may be problematic because of potential confounding effects (eg, the imbalance in baseline factors or exposures). It is important to study whether the baseline factors or exposures have causal effects on the clinical outcomes, so that clinicians can have better understanding of the diseases and develop personalized medicine. Mendelian randomization (MR) provides an efficient way to estimate the causal effects using genetic instrumental variables to handle confounders, but most of the existing studies focus on a single outcome at a time and ignores the correlation structure of multiple outcomes. Given that clinical outcomes like toxicities and quality of life are usually a mixture of different types of variables, and multiple datasets may be available for such outcomes, it may be much more beneficial to analyze them jointly instead of separately. Some well‐established methods are available for building multivariate models on mixed outcomes, but they do not incorporate MR mechanism to deal with the confounders. To overcome these challenges, we propose a Bayesian‐based two‐stage multivariate MR method for mixed outcomes on multiple datasets, called BMRMO. Using simulation studies and clinical applications on the CO.17 and CO.20 studies, we demonstrate better performance of our approach compared to the commonly used univariate two‐stage method.

Funder

Princess Margaret Cancer Foundation

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3