CarpNet: Transformer for mitral valve disease classification in echocardiographic videos

Author:

Vafaeezadeh Majid1ORCID,Behnam Hamid1ORCID,Hosseinsabet Ali2,Gifani Parisa3ORCID

Affiliation:

1. Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology Tehran Iran

2. Cardiology Department, Tehran Heart Center Tehran University of Medical Sciences Tehran Iran

3. Medical Sciences and Technologies Department Science and Research Branch, Islamic Azad University Tehran Iran

Abstract

AbstractMitral valve (MV) diseases constitute one of the etiologies of cardiovascular mortality and morbidity. MV pathologies need evaluating and classifying via echocardiographic videos. Transformers have significantly advanced video analytics. MV motion is divided by Carpentier functional classification into four types: normal, increased, restricted, and restricted only during systole. This paper introduces CarpNet, a deep transformer network that incorporates video transformers capable of direct MV pathology Carpentier's classification from the parasternal long‐axis (PLA) echocardiographic videos. The network, instead of processing frames independently, analyzes stacks of temporally consecutive frames using multi‐head attention modules to incorporate MV temporal dynamics into the learned model. To that end, different convolutional neural networks (CNNs) are evaluated as the backbone, and the best model is selected using the information of the PLA view. The use of information obtained by our proposed deep transformer network from consecutive echocardiographic frames yielded better results concerning the Carpentier functional classification than information obtained by CNN‐based (single‐frame) models. Using the Inception_Resnet_V2 architecture as the backbone, CarpNet achieved 71% accuracy in the test dataset. Deep learning and transformers in echocardiographic videos can render quick, precise, and stable evaluations of various MV pathologies.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3