Affiliation:
1. Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology Tehran Iran
2. Cardiology Department, Tehran Heart Center Tehran University of Medical Sciences Tehran Iran
3. Medical Sciences and Technologies Department Science and Research Branch, Islamic Azad University Tehran Iran
Abstract
AbstractMitral valve (MV) diseases constitute one of the etiologies of cardiovascular mortality and morbidity. MV pathologies need evaluating and classifying via echocardiographic videos. Transformers have significantly advanced video analytics. MV motion is divided by Carpentier functional classification into four types: normal, increased, restricted, and restricted only during systole. This paper introduces CarpNet, a deep transformer network that incorporates video transformers capable of direct MV pathology Carpentier's classification from the parasternal long‐axis (PLA) echocardiographic videos. The network, instead of processing frames independently, analyzes stacks of temporally consecutive frames using multi‐head attention modules to incorporate MV temporal dynamics into the learned model. To that end, different convolutional neural networks (CNNs) are evaluated as the backbone, and the best model is selected using the information of the PLA view. The use of information obtained by our proposed deep transformer network from consecutive echocardiographic frames yielded better results concerning the Carpentier functional classification than information obtained by CNN‐based (single‐frame) models. Using the Inception_Resnet_V2 architecture as the backbone, CarpNet achieved 71% accuracy in the test dataset. Deep learning and transformers in echocardiographic videos can render quick, precise, and stable evaluations of various MV pathologies.
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献