Affiliation:
1. College of Printing, Packaging and Digital Media Xi'an University of Technology Xi'an Shaanxi China
2. College of Materials Science and Engineering Xi'an University of Technology Xi'an Shaanxi China
3. Laboratory of Polymerization Zhejiang Research Institute of Chemical Industry Hangzhou Zhejiang China
Abstract
AbstractA lead‐free tetragonal‐phase (Ba0.94Ca0.06)(Ti0.95Zr0.05)O3 (BCTZ) micro sheet is prepared by molten‐salt growth method, which exhibits a polarizing behavior of relaxor ferroelectricity and possesses a high dielectric constant (εr) of ~2400. Subsequently, the BCTZ sheet is evenly doped into ferroelectric copolymer P(VDF‐TrFE)55/45 mol% with different mass fractions, and the flexible BCTZ/P(VDF‐TrFE) composite films are prepared using a conventional solution casting process. εr of BCTZ/P(VDF‐TrFE) increases with the mass content of BCTZ, and reaches 23.8 in 20 wt% BCTZ sample. Meanwhile, at a high electrical field of 30 MV/m, the strain and electric field of BCTZ/P(VDF‐TrFE) are in the opposite direction, indicating a negative value of piezoelectric strain coefficient (d33) caused by inverse piezoelectric effect. In addition, d33 of different BCTZ/P(VDF‐TrFE) films are fitted using a strain‐electrical field curve, which firstly increases and then decreases with increases in BCTZ content. As such, a high d33 of −47.3 pC/N is obtained in BCTZ/P(VDF‐TrFE)15/85 wt% film. Thus, this research concerning the inverse piezoelectric effect may provide a reference for designing a piezoelectric composite using in transducers and actuators.
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献