Evaluation of novel urethane dimethacrylates as crosslinkers for the development of fracture tough dental materials containing a poly(ε‐caprolactone)‐polydimethylsiloxane‐poly(ε‐caprolactone) triblock copolymer

Author:

Ott Erwan1,Fässler Pascal1,Grob Benjamin1,Rist Kai1,Vidal Loïc2,Lalevée Jacques2,Catel Yohann1ORCID

Affiliation:

1. Research Technology Organic Chemistry Ivoclar Vivadent AG Schaan Liechtenstein

2. Institut de Science des Matériaux de Mulhouse IS2M, UMR CNRS 7361 Université de Haute‐Alsace Mulhouse France

Abstract

AbstractPhotocuring 3D printing of materials exhibiting high fracture toughness and excellent mechanical properties (flexural strength/modulus) is challenging. Nowadays, most of the photocurable 3D printing resins are based on a mixture of multifunctional (meth)acrylates and provide therefore brittle materials. This article describes further developments of a toughening strategy based on the incorporation of block copolymers in low crosslink density methacrylate‐based materials. Six dimethacrylates bearing a bisphenol A core and urethane groups are successfully synthesized. Various spacers between the bisphenol A core and the methacrylate groups are selected. Each monomer is combined with (octahydro‐4,7‐methano‐1H‐indenyl)methyl acrylate as a monofunctional monomer and a poly(ε‐caprolactone)‐polydimethylsiloxane‐poly(ε‐caprolactone) triblock copolymer is added as toughener. It is shown that the addition of the triblock copolymer results for all mixtures in a strong increase of the fracture toughness. Moreover, the higher the amount of monofunctional monomer, the stronger the increase. The nature of the urethane dimethacrylate is found to have a significant influence on the fracture toughness, flexural strength, and flexural modulus of cured materials. Two of the synthesized dimethacrylates are identified as promising candidates for the development of fracture‐tough photocuring 3D printing materials.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3