Evolution of air‐borne vocalization: Insights from neural studies in the archeobatrachian species Bombina orientalis

Author:

Huggenberger Stefan12ORCID,Walkowiak Wolfgang2

Affiliation:

1. Institute of Anatomy and Clinical Morphology Witten/Herdecke University Witten Germany

2. Institute for Zoology University of Cologne Cologne Germany

Abstract

AbstractVocalization of tetrapods evolved as an air‐driven mechanism. Thus, it is conceivable that the underlaying neural network might have evolved from more ancient respiratory circuits and be made up of homologous components that generate breathing rhythms across vertebrates. In this context, the extant species of stem anurans provide an opportunity to analyze the connection of the neural circuits of lung ventilation and vocalization. Here, we analyzed the fictive lung ventilation and vocalization behavior of isolated brains of the Chinese fire‐bellied toad Bombina orientalis during their mating season by nerve root recordings. We discovered significant differences in durations of activation of male brains after stimulation of the statoacoustic nerve or vocalization‐relevant forebrain structures in comparison to female brains. The increased durations of motor nerve activities in male brains can be interpreted as fictive calling, as male's advertisement calls in vivo had the same general pattern compared to lung ventilation, but longer duration periods. Female brains react to the corresponding stimulations with the same shorter activity pattern that occurred spontaneously in both female and male brains and thus can be interpreted as fictive lung ventilations. These results support the hypothesis that vocal circuits evolved from ancient respiration networks in the anuran caudal hindbrain. Moreover, we could show that the terrestrial stem archeobatrachian Bombina spec. is an appropriate model to study the function and evolution of the shared network of lung ventilation and vocal generation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3