Nuclear parcellation and numbers of orexinergic neurons in five species of larger brained birds

Author:

Mazengenya Pedzisai123ORCID,Spocter Muhammad A.34ORCID,Manger Paul R.3ORCID

Affiliation:

1. College of Medicine Ajman University Ajman United Arab Emirates

2. Center of Medical and Bio‐allied Health Sciences Research Ajman University Ajman United Arab Emirates

3. School of Anatomical Sciences, Faculty of Health Sciences University of the Witwatersrand Johannesburg Parktown Republic of South Africa

4. Department of Anatomy Des Moines University Des Moines Iowa USA

Abstract

AbstractThe orexinergic/hypocretinergic system, while having several roles, appears to be a key link in the balance between arousal and food intake. In birds, to date, this system has only been examined anatomically in four species, all with brains smaller than 3.5 g and of limited phylogenetic range. Here, using orexin‐A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of a Congo gray and a Timneh gray parrot, a pied crow, an emu, and a common ostrich. These birds represent a broad phylogeny, with brains ranging in size from 7.85 to 26.5 g. Within the hypothalami of the species studied, the orexinergic neurons were organized in two clusters, and a densely packed paraventricular hypothalamic nucleus cluster located within the medial hypothalamus (Hyp), but not contacting the ventricle, and a more loosely packed lateral hypothalamic cluster in the lateral Hyp. Stereological analysis revealed a strong correlation, using phylogenetic generalized least squares regression analyses, between brain mass and the total number of orexinergic neurons, as well as soma parameters such as volume and area. Orexinergic axonal terminals evinced two types of boutons, larger and the smaller en passant boutons. Unlike the orexinergic system in mammals, which has several variances in cluster organization, that of the birds studied, in the present and previous studies, currently shows organizational invariance, despite the differences in brain and body mass, phylogenetic relationships, and life‐histories of the species studied.

Funder

Carnegie Corporation of New York

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3